
1 Topological vector spaces and differentiable maps

Definition 1.1 (Topology) Let S be a set. A subfamily T of P (S), the family of
subsets of S, is called a topology on S iff

• The empty set ∅ is an element of T ,

• The union of elements of an arbitrary subfamily of T is again in T ,

• The intersection of elements of a finite set of elements of T is again in T .

The elements of T are called open sets. A basis of a topology T is a family B
of subsets of S such that every open set is a union of elements of B. A subbasis
of T is a family B of subsets of S such that every open set is a union of finite
intersections of elements of B. A topological space is called compact iff every of
its open coverings contains a finite subcovering.

Definition 1.2 (Metric space) Let S be a set. A metric on S is a nonnegative
function on S × S with

• Symmetry: d(x, y) = d(y, x) for x, y ∈ S,

• Faithfulness: d(x, y) = 0 ⇒ x = y,

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

A ball of radius r around p is the set Br(p) := {q ∈ S|d(p, q) < r}.

The triangle inequality implies the converse of the second relation (faithfulness),
thus d−1({0}) is the diagonal in S × S. Every metric generates a topology by
taking the balls as a basis of a topology.
In the following, let K be R or C. A vector space (V,+, ·) over K is called a
topological vector space over K iff + and · are continuous maps. With all the
details:

Definition 1.3 A topological vector space (tvs) over K is a topological space
V together with two continuous maps + : V × V → V and · : K × V → V such that
(V,+) is an abelian group and with the properties:

• If 1 is the neutral element of K then 1 · v = v for all v ∈ V

• For all a, b ∈ K and all v ∈ V holds a · (b · v) = (ab) · v

• For all a, b ∈ K and all v, w ∈ V holds a · (v + w) = a · v + a · w and
(a+ b) · v = a · v + b · v.

A subset A of a tvs V is called convex iff for p, q ∈ A and t ∈ (0, 1) also tp +
(1− t)q ∈ A. Finally, V is called locally convex iff every neighborhood of a point
contains a convex subneighborhood.

Exercise (1). Show that the inversion v 7→ −v is continuous in every tvs.
Exercise (2). A metric d on a vector space V is called translation-invariant if for
all x, y, z ∈ V we have d(x+z, y+z) = d(x, y). Show that the topology generated by
a translation-invariant metric is always compatible with the vector-space structure.

Definition 1.4 Let V be a vector space over K. A seminorm on V is a nonneg-
ative function || · || : V → R with (for all v, w ∈ V, a ∈ K)
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• ||av|| = |a| · ||v||

• ||v + w|| ≤ ||v||+ ||w||.

This implies that ||0|| = 0. If ||v|| = 0 ⇒ v = 0, || · || is called norm. A positive
definite sesquilinear form on V is called scalar product.

Every norm || · || generates a metric d (and thereby a topology) by d(p, q) := ||p−q||.
This enables us to introduces subclasses of tvs with additional structures: spaces
with scalar product, normed spaces and metric vector spaces. If only the topological
structure of these spaces is considered we speak of scalable, normable and metrizable
tvs.

Example 0: Show that Rn with the usual product topology can be thought of as
coming from choosing a basis and using the associated scalar product. Show that
this is a tvs (exercise(3)).
Example 1: Let S be a set and B(S,K) the family of bounded maps from S to
K. Then the map n : B(S) → R given by n(f) := supS |f | is a norm: supS(|λf |) =
|λ| supS |f | and supS |f + g| ≤ supS |f | + supS |g|, and also ||v|| = 0 implies v = 0.
Note that here we get a tvs, even a normed space, without any topology on S.
Exercise (4): How can you construct the space B(S,Kn) of bounded maps from
S to Kn out of B(S,K)?

In particular, we can give the space of bounded real sequences the structure of
a normed vector space. If we want to generalize this to spaces of arbitrary real
sequences RN, we see that we cannot find easily a norm on this space (later we
will show that there is none), but we can find a metric. To this purpose, we now
consider a technical tool for defining metrics. Let, for every i ∈ N, φi : [0,∞) →
[0,∞) a continuous, strictly increasing, concave function with φi(0) = 0. Define
Φi := supφi = limt→∞ φi(t). If there is a C ∈ R with Φn < C for all but finitely
many n, then the sequence of functions is called nice (or essentially bounded).
If

∑
n∈N Φn <∞ we will call the sequence of functions supernice (or summable).

In particular, every element of a supernice sequence is a bounded function.
Exercise (5): Show that φ given by φi(t) := 2−i · t/(t+ 1) is a supernice sequence
of functions.

Example 2: Consider the space RN of real sequences, with the compact-open
topology. The latter, made for topologize spaces of maps between topological spaces
A and B, is the topology generated by the subbasis consisting of the sets (K,O) :=
{f ∈ BA|f(K) ⊂ O} where K is running through the compact sets in A and O is
running through the open sets in B.
Exercise (6): Show that for any φ a supernice sequence of functions, the metric
Dφ(s1, s2) =

∑
i∈N φi(|s1i − s2i |) defines on RN a compatible metric and thus a tvs

structure. Equally, every nice sequence of functions ψ, via the metric dψ(s1, s2) =
supi∈N ψi(|s1i −s2i |), determines a compatible metric and thus a tvs structure on RN.
Remark. We will see after some pages that all these metrics give rise to the same
tvs structure.

Example 2a: Let T be a topological space, then consider C0
b (T,K) ⊂ C0(T,K) ⊂

KT , the space of bounded continuous functions, with the compact-open topology.
Exercise (7): Prove that f 7→ supT |f | is a norm generating the a topology finer
or equal to the compact-open topology with equality if and only if T is compact.

It is clear that if T is compact then C0
b (T,K) = C0(T,K) and that in general this

is not the case: there are continuous unbounded functions on Rn.
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Example 2b: Now, let a general topological space T be given with a compact
exhaustion Ci ⊂ Ci+1 → T of T (for T = Rn, what could You choose?). Then, for
every supernice sequence φ resp. nice sequence ψ, we define the metrics

dψ(f, g) := dψ(i 7→ sup
Ci

|f |) =
∞

sup
i=1

ψi(sup
Ci

|f |),

Dφ(f, g) := Dφ(i 7→ sup
Ci

|f |) =
∞∑
i=1

φi(sup
Ci

|f |).

Exercise (8): Show that this metric does generate the CO topology, even if T is
noncompact!

Example 2c: Let U be an bounded open subset of Rn, then we define Ck(U,R)
as the set of k times differentiable real functions on U such that each of its multi-
derivatives has a continuous extension to U . Given a function f , one considers the
set of suprema (C0-norms) of the multiindexed derivatives

∂|l|f

∂xl
:=

∂|l|f

(∂xl(1))i(1)...(∂xl(k))i(k)
,

where the multiindices are defined the way that l(j) < l(j + 1) (by the symmetry
of higher derivatives) and, by definition, |l| =

∑
i(j). Observe that the finiteness of

the single terms is guaranteed by the condition that the function has a Ck extension
to the boundary and that U is compact. Then we add the terms so obtained, so we
get

||f ||Ck(U) :=
∑

multiindices l

||∂
|l|f

∂xl
||C0(U).

Example 3a: If we consider the space F of smooth functions on U which have a
smooth extension to U , we just consider the sequence C(f) of Ck norms of f and
define, for a nice sequence ψ resp. a supernice sequence φ, the metrics

dψ(f − g) := dψ(C(f − g)) = sup
n∈N

ψn(||f − g||Cn(U)),

Dφ(f − g) := Dφ(C(f − g)) =
∑
n∈N

φn(||f − g||Cn(U)).

Both lead to the same tvs structure: as these topologies are metrizable, they are
characterized completely in terms of convergence of sequences. Exercise(9): Show
that a sequence of smooth functions converges in the topologies defined by these
metrics if and only if the sequence converges in every Ck topology. Show that they
are metrics which do not come from norms.
Remark: Of course one could consider the Ck-norms on F which might seem
better at first sight, but it turns out that these cannot produce the topology one
wants to give the space; this will be clearer later on when we consider the concept
of completeness.
Example 3b: For Ck or smooth functions on a region U which do not have an
extension a priori (e.g. on Rn we cannot even define easily what an extension should
mean) we can do the same thing by choosing a compact exhaustion Ci ⊂ Ci+1 → U
and get a two-dimensional infinite table of entries ||f − g||Ck(Ui) parametrized by
(k, i) ∈ N × N. Then by a counting of N × N we can proceed analogously to the
previous example and get metrics defining a tvs structure.
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Example 3c: Finally, there are examples of spaces of analytic resp. holomorphic
functions Cωb (B1(0)) of bounded analytic functions on B1(0), Cω(B1(0)) of ex-
tendible analytic functions on B1(0), Cω(Rn) (with the norm being the evaluation
in B1(0)). We will consider these spaces later in the text.

Exercise (10): Show that in a tvs V , for every open neighborhood U of 0 there is an
open neighborhood W of 0 with W+W ⊂ U . A subset A in V is called starshaped
if λA ⊂ A for all λ ∈ K with |λ| < 1. Show that V is locally starshaped, i.e., that
every neighborhood of 0 contains an open starshaped neighborhood of 0.

In the following, for two tvs A and B, let L(A,B) denote the set of all linear maps
from A to B, and CL(A,B) the set of all continuous linear maps from A to B.

Theorem 1.5 Let V be a tvs, a ∈ L(V,K). Then the following statements are
equivalent:

1. a is continuous,

2. ker(a) is closed,

3. There is a neighborhood U of 0 with a(U) bounded in R.

Proof. 1 ⇒ 2 is obvious and 3 ⇒ 1 an easy exercise (11). So let us show 2 ⇒ 3.
Assume that a has a closed kernel. Fix v ∈ V \ ker(a). Then there is an open
neighborhood Ũ = v + U0 of v disjoint from ker(a). Choose a starshaped U ⊂ U0.
Then, for every u ∈ U we have a(u) 6= ±a(v) (*). The image a(U) is starshaped in
K, too, and by (*) contained in the a(v)-disk in K. 2

In topological vector spaces there is a definition of sequences whose terms ’asymp-
totically stay arbitrarily close together’:

Definition 1.6 Let V be a tvs. A sequence xn in V is called vector-Cauchy iff
for every neighborhood U of 0 there is an n ∈ N with:

b, c ≥ n⇒ xb − xc ∈ U.

On a metric space we can make an analogous definition:

Definition 1.7 Let (M,d) be a metric space. A sequence xn in M is called metric-
Cauchy iff for every ε > 0 there is an n ∈ N with

b, c ≥ n⇒ d(xb, xc) < ε.

The natural question staring at the last two definitions is: If we have a tvs whose
topology is generated by a metric, do the two of the preceeding definitions coin-
cide? The following theorem tells us that they do if the metric is translational-
invariant, i.e. if for all v, w, x ∈ V we have d(v + x,w + x) = d(v, w):

Theorem 1.8 Let V be a tvs with a translational-invariant metric generating the
topology. Then a sequence in V is vector-Cauchy if and only if it is metric-Cauchy.

The proof is an easy exercise (12). 2

Now there is another important connection between convergence and the Cauchy
property:
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Theorem 1.9 A convergent sequence in a tvs is vector-Cauchy.

Proof. Similar to the previous proof (exercise (13)!)

It is quite reasonable to distinguish those tvs in which also the converse of the
previous theorem holds:

Definition 1.10 A tvs V is called (sequentially) complete iff every vector-
Cauchy sequence converges.

Remark: In non-metrizable tvs there is a stronger notion of completeness which
we will meet later.

Definition 1.11 A Fréchetable space is a complete metrizable locally convex tvs.
A Fréchet space is a locally convex space together with a compatible translation-
invariant complete metric. A Banachable space is a tvs which has a compatible
complete norm. A Banach space is a pair consisting of a Banachable space and a
compatible complete norm. A Hilbertable space is a tvs which has a compatible
complete scalar product. A Hilbert space is a pair consisting of a Hilbertable space
and a compatible complete scalar product.

Remark-Warning: In the literature, what we call Fréchetable is often called
Fréchet and what we call Fréchet is often called metric Fréchet.
Exercise (14): Show that any Banach space is locally convex (thus, any Hilbert
space is a Banach space and any Banach space is a Frechet space).

To justify further the first part of the definition, let us give the following theorem:

Theorem 1.12 Every Frechet space has a compatible translation-invariant metric
(which then is automatically complete).

Proof. Let δ be a compatible metric for the Fréchetable space, then define a new
metric d by d(x, y) := δ(x − y, 0). This metric is obviously translation-invariant
and it is compatible as well. To show this, one has to prove that every open set
contains a ball and vice versa. Thus, given an open set U , choose a point p ∈ U and
consider the set U − p. Because the vector addition is continuous, this is an open
neighborhood of 0 and contains therefore a ball Bdε (0) = Bδε (0). Then U contains
the ball Bdε (p). Conversely, given a d-ball Bdr (p), we want to show that it is open.
Because of continuity of vector addition, it is enough to show that Bdr (p)−p = Bdr (0)
is open. But this coincides with Bδ(0) which is open by definition. 2

Theorem 1.13 A subset A of a Fréchet space F with the induced metric is complete
if and only if it is closed in F .

Proof: Exercise (15). 2

Example 4a: In B(N,K) consider the following subspaces: the space of finite
sequences Bc(N,K) := {a ∈ B(N,K)|∃N ∈ N : an = 0∀n > N}, the space of
sequences converging to zero B0(N,K) := {a ∈ B(N,K)| limn→∞ an = 0} and the
space Bl(N,K) := {a ∈ B(N,K)|∃k ∈ K : limn→∞ an = k}, all with the restriction
of the norm of B(N,K).
Exercise (16): Show that Bc(N,K) ⊂ B0(N,K) ⊂ Bl(N,K). A subspace A of
a vector space V is said to be complemented if there is a second subspace B
with V = A ⊕ B. If the complement has finite dimension n one sais that A has
codimension n. What is the codimension of B0(N,K) in Bl(N,K)? Show that
Bc(N,K) is not closed in B0(N,K).
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Theorem 1.14 Both B0(N,K) and Bl(N,K) are closed in B(N,K).

Example 4b: The concepts from Example 4a generalize to topological spaces T
instead of N, and to metric vector spaces V instead of K: B(T, V ) with the norm
||f || := sup{d(f(t), 0)|t ∈ T}, as well as its subspaces (for a ∈ V )

Bl(T, V ) := {f ∈ B(T, V )|∃v ∈ V : f−1(V \Bε(v)) is compact}
The space B0(T, V ) corresponds of course to the case v = 0. In the case of metric
spaces M instead of T there is another possible generalization:

Bd(T, V ) := {f ∈ B(T, V )|∃v ∈ V : f−1(V \Bε(v)) is bounded (contained in a ball)}
We will see when these spaces differ one from the other. Now the last space is
Bc(T, V ), the space of functions with compact support.
Exercise (17). A topological space A is called σ-compact iff it has a countable
compact exhaustion Cn ⊂ Cn+1 → A. Show that if T contains a noncompact σ-
compact subset, Bc(T, V ) is not closed in B(T, V ), and that, in the case of T being
a metric space containing a non-compact σ-compact subset, Cc(T, V ) is not closed
in Cb(T, V ) (You might want to begin with T = R, the idea is always the same).

Exercise (18): Show that the Ck(U) spaces defined above are complete (it is a
typical 3ε-argument You can find in any analysis textbook - if You want to spoil
Yourself the fun to discover it on Your own...).

Let Bm(N, V ) ⊂ V N (with the topology of pointwise convergence, which coincides
with the CO topology in this case as every compact set is finite) be the space of
vector-Cauchy sequences in a topological vector space V . Obviously, it contains
B0(N, V ). The idea behind the construction of the following space, the completion
of V , consists of including all possible limits of sequences in V . Those who feel
unconfortable with the definition should first read the second remark after it.

Definition 1.15 (Completion) Let V be a tvs. Then the space V := Bm(N, V )/B0(N, V )
with the quotient topology is called the completion of V .

Theorem 1.16 For every tvs V , its completion V is complete. There is a natural
linear embedding of V in V . If V ⊂W was equipped with the subspace topology and
W is a complete tvs that then V is the topological closure of V in W (so that using
the same symbol for both is justified). Thus, the completion of a complete tvs V is
V itself.

Proof: Exercise (19). 2

Remark: The last property of the preceding theorem is a universal property which
characterizes the completion V as the smallest complete tvs containing V : If there
is a complete tvs containing V then it contains V a well.
Remark: At first sight, it seems strange that in a definition of a completion of a
space V , a space of sequences in V appears, as the latter is much larger. But we
divide out a space which is also very large. Observe that in the case of a complete
space every Cauchy sequence converges, and then between convergent sequences
and sequences converging to 0 the difference is not so large anymore...

Theorem 1.17 If V carries a compatible metric resp. norm resp. scalar product,
we can construct a compatible metric resp. norm resp. scalar product on V (which
then is automatically complete).

Proof. Let us begin with the case of a metric. Given two elements [v], [w] of the
completion V , we choose two representatives v, w, i.e. Cauchy sequences in V , and
define
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dV ([v], [w]) := lim
n→∞

dV (vn, wn).

As v and w are Cauchy sequences, the triangle equality in V implies that dV (vn, wn)
is a Cauchy sequence in R, and as R is complete, the limit exists. For the other
cases proceed analogously and set

||[v]||V := lim
n→∞

||vn||V

〈[v], [w]〉V := lim
n→∞

〈vn, wn〉V .

This concludes the proof. 2

Example 5: Let U be an bounded open subset of Rn, then on Ck(U), apart from
its original norm, we can consider the norm

||f ||k,p =
∑
|i|≤k

||∂
|i|f

∂xi
||Lp(U).

where ||g||Lp(U) := p

√∫
U
|g|p and the integral is meant with respect to the Lebesgue

measure. Exercise (20): meditate a while about the question why this is well
defined, the Lebesgue measure is a Borel measure, the region is compact, etc. Then
find a (k, p)-Cauchy sequence without a limit in Ck showing that Ck with this
(k, p)-metric is incomplete!
Now the spaces W k,p(U) are defined as the completion of (Ck(U), || · ||k,p). In the
case of p = 2 we consider a scalar product instead of a norm.
Remark: This definition is not entirely satisfying as, for example, it is unclear how
to interpret the elements of the completed space: are they functions in any sense?
Later we will see that there is another possible definition or characterization for
W k,p.
Example 6: Linear subspaces of those above, Ck0 (functions of compact support)
with a subspace topology: not complete in any sense. The space of asymptotic
functions

Ckl (U) := {f ∈ Ck(U)|∃g ∈ Ck(U)∀ε > 0∃K ⊂ U compact : ||f − g||Ck(U\K) ≤ ε},

or e.g. periodic functions or solutions of linear differential equations.
Example 7: The duals of the spaces above, more generally, the spaces of linear
maps between them. Spaces of sequences in infinite-dimensional spaces.
Three examples: (RN)∗, (C0(R))∗ = µ0(R), the space of Borel measures of compact
support, and (C∞(R))∗ =: D(R), distributions, of which it will turn out that none
is metrizable.

Definition 1.18 Let T be a topological space. A subset A is called dense if its
intersection with every open subset of T is nonempty. It is called nowhere dense
iff the interior of A is the empty set. A subset is called meager iff it is the countable
union of nowhere dense sets.

Remark-Warning: The vast majority of the literature prefers the term of first
category instead of meager.
Exercise (21). Show that the complement of a nowhere dense set is dense.

Obviously this relative property (of a pair of spaces) is preserved by pair homeo-
morphism, i.e. if H is a homeomorphism between T and U , then A is meager in T
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if and only if H(A) is meager in U . Also, with a meager subset A of T , every subset
of A is meager as well. Moreover, a countable union of meager subsets is meager.

Theorem 1.19 (Baire’s Theorem) Let M be a complete metric space, let A :
N → τ(M) be a sequence of dense open subsets of M . Then their intersection⋂
i∈N Ai is dense in M .

Proof. Let A 6= ∅ be open in M . Inductively for n ∈ N choose, by means of the
density assumption, nonempty open balls Bn of radius 1/n with Bn+1 ⊂ An+1∩Bn.
Now set C :=

⋂
n∈N Bn. As the midpoints of the balls form a Cauchy sequence, the

latter converges to a point in C, thus C 6= ∅. 2

As a corollary, we obtain

Theorem 1.20 Let M be a complete metric space. Then M is nonmeager in itself.

Proof. Let a sequence A of nowhere dense subsets be given. Define Ci := M \Ai,
the sequence of complementa. Then every Ci is dense in M , and Baire’s Theorem
tells us that their intersection is nonempty, i.o.w. that M 6=

⋃
i∈N Ai. 2

Theorem 1.21 Every finite-dimensional vector space V has exactly one norm topol-
ogy, which is Banachable.

Proof. Choose a basis vi of V and the associated linear map A : V → Rm. Then
pull back the Euclidean norm to V by A. This gives a norm || · ||, with ||vi|| = 1.
Assume there is another norm n on V . By using N := maxi=1...m n(vi), it is easy
to see that the identity of V is bounded in both directions. 2

Theorem 1.22 The dual of a Banach space is Banach, too.

Proof: Exercise (22) 2

Theorem 1.23 Let V be a Hausdorff tvs and W ⊂ V a linear subspace s.t. W is
Fréchetable with its subspace topology. Then W is closed in V .

Proof. We choose a translation-invariant metric d on W and a point p ∈ W .
As BW1/n(0) is open in W , we call an open neighborhoods U of 0 in V n-fat iff
Un∩W ⊃ BW1/n(0). Furthermore, for every neighborhood U of 0 we can find a point
qU ∈ (p+U)∩W . So if we exhaust the family of neighborhoods of 0 by n-fatness (An
is the class of n-fat neighborhoods), then we have W ∩Un := W ∩

⋂
A∈An

A = Br(0)
as there is an open neighborhood A of 0 with A ∩W = B1/n(0). Therefore if we
choose points qn ∈ (p + Un) ∩W , then, by the triangle inequality, the qn form a
Cauchy sequence in W and thus converge to a point q ∈W . As they also converge
to p by exhaustion of the neighborhood system of p and as V is Hausdorff, we get
p ∈W . 2

Theorem 1.24 Let V be a finite-dimensional vector space. Then V has exactly
one Hausdorff topology, and with this topology, V is linearly homeomorphic to Rn,
which is Banach.

Proof. By induction. Assume it holds for an n ∈ N. Then on an (n+1)-dimensional
vector space choose a basis vi and induce a norm n from Kn+1, this is Banach by
Theorem 1.21. Now let T be a Hausdorff topology on V . Then define v∗k :

∑
λivi 7→

λk. As by induction and Theorem 1.23 we have that kerv∗k is closed, Theorem 1.5
implies that all v∗k are T-continuous. On the other hand, they are n-continuous by
definition. Thus 1 =

∑
v∗i · vi is continuous in both directions. 2

Now let us come to the notion of basis:
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Definition 1.25 Let V be a vector space. An algebraic basis or Hamel basis
of V is a subset B of V such that for every element v of V there is a unique finite
subset A = ((k1, v1), ...(kn, vn)) of K ×B with v =

∑n
i=1 ki · vi.

Let V be a Hausdorff topological vector space. A topological basis of V is
a subset B of V such that for every element v of V there is a unique countable
subset A of K ×B with v =

∑
i∈N ki · vi := limn→∞

∑n
i=1 ki · vi for some counting

i 7→ (ki, vi) of A. If the coefficient functions are continuous, then B is called
continuous basis, if moreover B is countable, it is called Schauder basis.

Remark: A usual additional requirement on a topological basis is countability.
We will not require this here, as there are tvs whose only topological basises are
uncountable, e.g. Bc(N,Rn) for n ≥ 2 (which in this case can be chosen to be con-
tinuous). If the topological basis is countable then one can choose a fixed counting
and speak of a unique sequence of coefficients for every vector. Instead of count-
ability one could require also that the basis be discrete, i.e. that for every element
v of the basis we can find an open neighborhood Uv such that Uv ∩ Uw = ∅ for
v 6= w. This is automatically the case for countable basises (exercise (23)). A
discrete Hamel basis is a Schauder basis. While the existence of a Hamel basis is
always asserted by the Axiom of Choice, the same question for topological basises
is, to our knowledge, still unanswered.

Theorem 1.26 In a Hausdorff tvs, if a series of vectors converges, the series of
every permutation either converges to the same vector or does not converge at all.

Proof. Assume that
∑
xn → v and

∑
xσ(n) → w 6= v. Now choose two disjoint

neighborhoods U of v and W of w. Now there is a finite F0 ∈ N such that for
every finite F ⊃ F0, we have

∑
n∈F xn ∈ U . Now we take an N0 with F0 ⊂

{σ(1), ...σ(N0)}, and an N > N0 with
∑N
i=1 xσ(i). If we define F := {σ(1)...σ(N)},

then F0 ⊂ F and

W 3
N∑
n=1

xσ(n) =
∑
n∈F

xn ∈ U

in contradiction to the assumption that U and W are disjoint. 2

Exercise (24): Show that the unit vectors en with en(i) = 0 for i 6= n, en(n) = 1,
form a Schauder basis of B0(N,K), but not of B(N,K)!
Exercise (25): Show that finite-dimensional subsets of a Hausdorff tvs are nowhere
dense. Conclude with Theorem 1.20 that any Hamel basis in a complete metrizable
vector space is uncountable.
Remark: In the previous exercise, completeness is necessary as Bc(N,K) has a
countable Hamel basis consisting of the vectors ei above.
Exercise (26): A topological space is called separable if it contains a countable
dense subset. Show that if a tvs V has a countable Schauder basis that then it is
separable!
Remark. The converse is not true: There are separable tvs without a Schauder
basis as we will see later.

Theorem 1.27 (Hahn-Banach Theorem) Let V be a real vector space and W
a linear subspace. Let p : V → R be sublinear (that is, p(v + w) ≤ p(v) + p(w)
for all v, w ∈ V , and p(λv) ≤ λp(v) for all λ ∈ R, v ∈ V ) and f ∈ L(W,R) with
f(w) ≤ p(w) for all w ∈ W . Then there is an F ∈ L(V,R) with F |W = f and
F (v) ≤ p(v) for all v ∈ V , that is, f can be extended to a linear functional on all
of V still dominated by p.
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Proof. The proof is based on the Axiom of Choice in the form of Zorn’s Lemma
and the following Lemma which allows a gradual extension of the subspace by one
dimension:

Lemma 1.28 Let Y ( V be a proper subspace of V . Then there is another subspace
Y ′ of V , Y ( Y ′, and a linear extension f ′ of f on Y ′ such that still f ′ ≤ p.

Proof. Fix an x ∈ V \ Y and define Y ′ := Y + Rx. Then every y′ ∈ Y ′ has a
unique decomposition y′ = y + tx′ where y ∈ Y and t ∈ R. Now define, for every
real number a, the linear functional f ′a(y + tx) := f(y) + a · t on Y ′. Obviously it
restricts to f on Y . We want to show that for a small enough it is dominated by p.
Observe that for y1, y2 ∈ Y we have

f(y1) + f(y2) = f(y1 + y2) ≤ p(y1 − x+ y2 + x) ≤ p(y1 − x) + p(y2 + x),

thus f(y1)− p(y1 − x) ≤ p(y2 + x)− f(y2), and

A := sup{f(y)− p(y − x)|y ∈ Y } ≤ inf{p(y + x)− f(y)|y ∈ Y } =: B,

and we can choose a real number r with A ≤ r ≤ B and define f ′ := f ′r. Then for
any t > 0 we have

f ′(y + tx) = t(f(t−1y) + r) ≤ tp(t−1y + x) = p(y + tx),

f ′(y − tx) = t(f(t−1y)− r) ≤ tp(t−1y − x) = p(y − tx),

thus p still dominates f ′.

Now to complete the proof of the theorem, let A be the family of all linear functionals
g, whose domains are linear subspaces of V , which restrict to f on Y and which
are dominated by p. They are partially ordered by restriction. Every nonempty
chain (i.e. totally ordered subset) of A has an upper bound by the union of the
corresponding subspaces and the definition of the linear functional by restriction.
Thus by Zorn’s lemma there is a maximal element F . Its domain has to be all of V
as otherwise it could be enlarged as in the lemma. This concludes the proof. 2

This theorem is of such a general applicability that Pedersen wrote once ’It can
be used every day, and twice on Sundays.’. One of its numerous corollaries is the
following:

Theorem 1.29 Let B be a Banach space and A a linear subspace of B. Every
f ∈ CL(A,R) with ||f || = C has an extension F ∈ CL(B,R) with ||F || = C.

Proof. Take p := C · || · ||. 2

Theorem 1.30 Let V be a Hausdorff tvs and C ⊂ V a closed subspace. Then V/C
with the quotient topology is again a Hausdorff tvs.

The proof is an exercise (27).

Theorem 1.31 (by Riesz in the case of Banach spaces) Let V be a Hausdorff
tvs. V is locally compact if and only if it is finite-dimensional.
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Proof. One direction is trivial by the Heine-Borel Theorem. For the other direction
assume that there is a compact neighborhood U of 0 ∈ V . Let 1

2U := { 1
2u|u ∈ U}.

For every x ∈ U define V (x) := x+ 1
2U which is a neighborhood of x. By compact-

ness of U there are x1, ...xn ∈ U with U ⊂
⋃n
i=1 V (xi). Put M := span(x1, ...xn).

We want to show that M = V . First observe that M is closed in V as any finite
dimensional linear subspace of a Hausdorff tvs is ( first note that it is Hausdorff
and then use Tychonoff’s Theorem and Theorem 1.23). Thus the quotient V/M is a
Hausdorff tvs by Theorem 1.30, and the projection π : V → V/M is continuous and
open as always in the quotient topology, so W := π(U) is a compact neighborhood
of 0 ∈ V/M . By construction, U ⊂ M + 1

2U . Thus using that π is linear and
vanishes on M , we have W ⊂ 1

2W and by induction 2jW ⊂ W for all j ∈ N, that
means W = V/M , so V/M is compact. So it cannot contain any one-dimensional
closed subspaces homeomorphic to K as the latter one is not compact which leaves
only the case V/M = {0}. 2

Let us from now on restrict ourselves to locally convex Hausdorff tvs or lhs for
short, for which we require that they be Hausdorff and that every neighborhood of
a point v contain a convex neighborhood of v.

Exercise (28). Show that all tvs considered so far are lhs!

Theorem 1.32 (Separation theorem) Let V be a lhs over K. Then CL(V,K)
separates points of V , that means, if p, q ∈ V , p 6= q, then there is an f ∈ CL(V,K)
with f(p) 6= f(q).

Proof. Consider first K = R. Without restriction of generality, let p = 0. Then
take a neighborhood U of 0 not intersecting q and an open and convex subneigh-
borhood C0 of U , define C := C0 ∩ (−C0) which is an open, convex and starshaped
neighborhood of 0. Define pC : V → R,

pC(v) = max{sup{|r| : r · v ∈ C}, 1}.

As C is convex, this is a sublinear function as the two arguments in the maximum
are sublinear functions and

max{a(v+w), b(v+w)} ≤ max{a(v)+a(w), b(v)+b(w)} ≤ max{a(v), b(v)}+max{a(w), b(w)}.

Now define W = R ·q and f ∈ L(W,R) by f(λ ·q) = λ. On W we have f(w) ≤ p(w).
Thus by Hahn’s Extension Theorem we can find an F ∈ L(V,R) with F (v) ≤ p(v)
for all v ∈ V . This implies that C is a neighborhood of 0 with F (C) bounded in
R. Linearity of F implies then that F is continuous. By definition F (q) = 1 6= 0 =
F (0). For the complex case use the fact that one can write a general complex linear
functional A as Av = Bv + iCiv for two real linear functionals B and C. 2

Definition 1.33 Let V,W be tvs, let U ⊂ V be open, let p ∈ U . A map f : U →W
is called differentiable at p iff there is a linear map Ap : V →W with

Ap(v) = lim
t→0

f(p+ t · v)− f(p)
t

for all v ∈ V .

This is well-defined as the argument of the limit is defined for t in an interval around
0 because scalar multiplication is continuous. Trivially Ap as above is unique if it
exists.
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Definition 1.34 Let V,W be topological vector spaces, let U ⊂ V be open. A map
f : U →W is called differentiable iff it is differentiable at every p ∈ U and if the
map f ′ : U × V → W , f ′(p, v) := Ap(v), is continuous w.r.t. the product topology.
In this case f ′ is called the first derivative of f. If it exists, the (n+1)th
derivative f (n+1) : U × V n+1, is defined by

f (n+1)(p, v1, ...vn) = d
dt |t=0(f (n)(p+ tvn+1, v1, ...vn)),

and in this case the map is called (n+1) times differentiable or a Cn+1 map.
We set C∞(U,W ) :=

⋃∞
i=1(U,W ) and call this the space of smooth maps. The

k-th differential dkf(p) ∈ L(Ek → F ) of f at p is defined as the multilinear part
dkf(p)(e1, ...ek) = f (k)(p, e1, ...ek).

Theorem 1.35 Let a ∈ K, U ∈ V open and f, g : U → W be Cn maps. Then
f + ag is a Cn map and

(f + ag)(n) = f (n) + ag(n),

in other words, the Cm maps from U to W form a K vector space Cm(U,W ) and
the map (n) : Cm(U,W ) → Cm−n(U,W ) is linear.

Proof. The pointwise differentiability and the form of the derivative is trivial. For
continuity, observe that for a number a and two continuous maps F,G : Ũ → W
also F + aG is continuous. 2

Corollary 1.36 Let V,W,X be topological vector spaces, U ∈ V open and f : U →
W, g : U → X be Cn maps. Then h = (f, g) : U → W ⊕ X is a Cn map and
h(n) = (f (n), g(n)).

Theorem 1.37 (chain rule and pointwise chain rule) Let V,W,X be tvs, U1 ⊂
V and U2 ⊂W be open, let g : U1 → U2, f : U2 → X be continuous in their domains
of definition and differentiable at p ∈ U1 resp. g(p). Then f ◦ g is differentiable at
p and

(f ◦ g)′(p, v) = f ′(g(v), g′(p, v)).

If f and g are differentiable in their respective domains of definition, so is f ◦ g.

Proof. We compute as usual

f ′(g(v), g′(p, v)) = lim
s→0

f(g(p) + sg′(p, v))− f(g(p))
s

= lim
s,t→0

f(g(p) + s g(p+tv)−g(p)t )− f(g(p))
s

= lim
t→0

f(g(p) + t g(p+tv)−g(p)t )− f(g(p))
t

= lim
t→0

f(g(p+ tv))− f(g(p))
t

= (f ◦ g)′(p, v).

Continuity follows as above (as preserved by composition). 2

The proof of the following theorem is a straightforward exercise (29):

Theorem 1.38 Let V,W be tvs, let A = A(0) + L be an continuous affine map
from V to W . Then A is differentiable and A′(p, v) = L(v). 2
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Theorem 1.39 (Euler’s Theorem) Let E,F be lhs. U ⊂ E open and f ∈
Cr(U,F ). Then f (k) is symmetric in its last k arguments, i.e. dkf(u) is a lin-
ear totally symmetric map for all u ∈ U .

Proof. We first focus on the first nontrivial case k = 2. Thus let u ∈ U , v, w ∈ E
be given, and we want to show d2f(u)(v, w) = d2f(u)(w, v). Consider the affine
map A : R2 → E, A(a, b) := u + av + bw. Now it is easy to see (exercise (30)!)
that d2f(u)(v, w) = d(f ◦ A)(0)(e1, e2). Thus our task reduces to the one to show
that for B := f ◦ A : V := A−1(U) → F we have dB′(0)(e1, e2) = dB′(0)(e2, e1).
Now let an arbitrary L ∈ CL(F,R) be given, then for C := L◦B and because of the
Separation Theorem, it is enough to prove that C : A−1(U) → R2 has symmetric
second derivatives at 0 which is a classical fact (proven with the finite-dimensional
mean value theorem).
Now for k > 2, we proceed inductively: if dkf(u) is totally symmetric for all u,
dk+1f(u) has to be symmetric in the last k entries. On the other hand,

dk+1f(u)(v1, ...vk+1) = d2Φ(u)(v1, v2),

where Φ(u) = dk−1f(u)(v3, ...vk), thus it is symmetric in the first two entries. As
the symmetric group Sk is generated by the permutation of the first two elements
and the set of all permutations of the last k − 1 elements, we are done. 2

Now we want to define the integral.

Let E be an lhs. Consider C0([a, b], E), the space of all continuous maps from
[a, b] to E topologized by the compact-open topology. This is a tvs (even an lhs:
exercise (31)!). A function f ∈ C0([a, b], E) is called piecewise linear iff there
is a partition a = t(0) < t(1) < ... < t(n) = b of [a, b] such that f |[t(i),t(i+1)] is linear
for all i = 0, ...k − 1. The piecewise linear maps form a subspace PL([a, b], E) of
C0([a, b], E) which is dense: Given a map c ∈ C0([a, b], E) and a neighborhood A of
c, then we can find a neighborhood ([a, b], O) ⊂ A for an open set O ⊂ E. Now for
every point p of [a, b] find a convex neighborhood Up ⊂ O of c(p), then the Up form
an open covering of c([a, b]), and any finite subcovering gives rise to a piecewise
linear map contained in (C,O).

For c ∈ PL([a, b], E) define

Iab(f) :=
∫ b

a

f(t)dt :=
n∑
i=1

1
2
(f(t(i))− f(t(i− 1)))(t(i)− t(i− 1)),

then Iab ∈ CL(PL([a, b], E), E) and extends continuously on all of C0([a, b], E).

Theorem 1.40 The integral has the following properties:

1. Iab : C0([a, b], E) → E is linear and continuous,

2. For all l ∈ CL(E,R) we have l(
∫ b
a
f(t)dt) =

∫ b
a
l(f(t))dt,

3. For all continuous seminorms || · || on E we have ||
∫ b
a
f(t)dt|| ≤

∫
||f(t)||dt,

4.
∫ b
a
f(t)dt+

∫ c
b
f(t)dt =

∫ c
a
f(t)dt.

Proof by proof for piecewise linear maps and continuous extension 2

For a C1 curve c in a lhs E we define c·(t) = c′(t, 1).
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Theorem 1.41 (fundamental theorem of calculus) Let E be a lhs. Let f :
[a, b] → E be a C1 curve, then

f(b)− f(a) =
∫ b

a

f ·(t).

If g : [a, b] → E is a C0 curve, and if we define

f(t) :=
∫ t

a

g(s)ds,

then f is C1 with f ·(t) = g(t).

Proof. We will reduce this theorem to the theorem in the case E = R. So let f be
a C1 curve, and let A ∈ CL(E,R). Then A ◦ f ∈ C1(R,R) and by the chain rule
we have (A ◦ f)·(t) = A ◦ f ·. Then the fundamental theorem of calculus for real
functions tells us that

A(f(b))−A(f(a)) = A(
∫ b

a

f ·(t)dt).

The rest is an application of the Separation Theorem.
For the second part, observe that

Lemma 1.42 For g : [a, b] → E is a C0 curve we have∫ t+h

t

f(s)ds = h

∫ 1

0

f(t+ hr)dr.

Proof of the lemma. In the case E = K this is known (substitution s = t+ hr).
In the general case it can be proved by composing with arbitrary continuous linear
functionals and applying the Separation Theorem.

By the lemma we have

f̃(t, h) :=
f(t+ h)− f(t)

h
=

∫ 1

0

f(t+ hr)dr.

Now f̃ is continuous (consider the right-hand side and take into account that the
integral is continuous and as pointwise scalar multiplication and vector addition is
continuous), thus f is differentiable with f ′ = g. 2

Definition 1.43 Let V and W be tvs. Then the tensor product of V and W
is the linear subspace of the tvs C0(V ×W,K) (topologized with the compact-open
topology) which consists of the maps linear in both arguments, i.e. the maps f with
f(λv1 + v2, w) = λf(v1, w) + f(v2, w) and similar in the second argument. It is
denoted by V ⊗W .

Exercise (32): Find a basis of V ⊗W for V , W finite-dimensional!
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